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This paper presents the first detailed comparisons between experiments and direct
numerical simulations (DNS) of inertial particle clustering in nearly isotropic ‘box
turbulence’. The experimental system consists of a box 38 cm in each dimension with
fans in the eight corners that sustain nearly isotropic turbulence in the centre of the
box. We inject hollow glass spheres with a mean diameter of 6 μm and measure the
locations of several hundred particles in a 1 cm3 volume in the centre of the box
using three-dimensional digital holographic particle imaging. We observe particle
concentration fluctuations that result from inertial clustering (sometimes called
‘preferential concentration’). The radial distribution function (RDF), a statistical
measure of clustering, has been calculated from the particle position field. We select
this measure because of its relevance to the collision kernel for particles. DNS
of the equivalent system, with nearly perfect parameter overlap, have also been
performed. We observe good agreement between the RDF predictions of the DNS
and the experimental observations, despite some challenges in the interpretation of
the experiments. The results provide important guidance on ways to improve the
measurement.

1. Introduction
Numerical simulations of inertial particles in turbulence have shown that the

particles tend to cluster outside of vortices, in the high-strain regions of the flow
(Squires & Eaton 1991; Eaton & Fessler 1994). Maxey (1987) correctly attributed this
effect to the centrifugal force acting on the particles in regions of high rotation, and
showed that the divergence of the particle velocity is not zero, but is proportional
to the local difference between the squares of the rate-of-strain and rate-of-rotation
tensors. The effect can give rise to rather dramatic non-uniformity of the particle
concentration field. Particle clustering can influence a broad range of aerosol
processes, such as particle settling (Wang & Maxey 1993; Aliseda et al. 2002),
evaporation/condensation (Shaw et al. 1998), and interparticle collisions (Wang,
Wexler & Zhou 2000). Sundaram & Collins (1997) identified the radial distribution
function (RDF), evaluated at contact, as the precise correction to the collision kernel
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to account for clustering. The RDF is a measure of the probability of finding a
second particle at a given separation distance from a test particle (McQuarrie 1976).
The RDF can be computed from a field of M particles by binning the particle pairs
according to their separation distance, and calculating

g(ri) =
Ni/�Vi

N/V
, (1.1)

where Ni is the number of particle pairs separated by a distance ri ± �r/2, �Vi is
the volume of the discrete shell located at ri , N = M(M − 1)/2 is the total number
of pairs and V is the total volume of the system. The subscript ‘i’ is the discrete
index and does not refer to a vector quantity. Direct numerical simulations (DNS)
have shown the RDF can reach values in excess of 100 for certain parameter
values (Reade & Collins 2000a; Wang et al. 2000). Subsequent numerical work has
quantified the dependence of the RDF on the particle Stokes number, and, to a lesser
extent, the Reynolds number (Collins & Keswani 2004). Theoretical investigations
have yielded predictions of the RDF under a variety of assumptions (Falkovich,
Fouxon & Stepanov 2002; Zaichik & Alipchenkov 2003; Chun et al. 2005). All of
the results suggest that inertial clustering could profoundly influence the evolution
of the size distribution of a coalescing aerosol.

Particle clustering may play an important role in the development of convective
clouds in the atmosphere. Cloud droplets below 20 μm in diameter are known
experimentally to have fairly low collection efficiencies; hence, most cloud models
assume droplets grow by condensation alone until they reach a critical size. However,
these models underpredict the breadth of the droplet size distribution and overpredict
the time required for warm rain initiation by as much as one order of magnitude (Shaw
2003). Shaw et al. (1998) hypothesized that droplet clustering may induce vapour
supersaturation fluctuations that will broaden the droplet size distribution. Falkovich
et al. (2002) argued that clustering-enhanced collisions may compensate for the lower
efficiency of smaller droplets. Additionally, Reade & Collins (2000b) observed that
particle inertia tends to broaden the size distribution of a coalescing aerosol.

Although the above arguments provide plausible explanations for the acceleration of
cloud development in the atmosphere, quantitative measurement of inertial clustering
remains largely based on DNS. There have been a few experimental images of
clustered particles in turbulence (Eaton & Fessler 1994); however, only recently have
those measurements become quantitative. Wood, Hwang & Eaton (2005) measured
a two-dimensional projection of the RDF of entrained particles in a turbulence box
by shining a laser sheet at the particles, and measuring their x–y locations with a
camera. They found clear evidence of clustering, albeit at levels lower than those
found in the DNS study by Sundaram & Collins (1999). One possible explanation
for the discrepancy is an attenuation effect due to the reduced dimension of the
measurement, as described by Holtzer & Collins (2002). Saw et al. (2007) measured
the one-dimensional RDF by sampling droplet arrivals at a fixed volume in a wind
tunnel. Arrival statistics were used to compute the one-dimensional projection of the
RDF, which too is susceptible to the error discussed in Holtzer & Collins (2002).

In this paper, we compare heretofore unavailable experimental measurements of the
three-dimensional RDF of particles in a ‘turbulence box’ with DNS under conditions
of excellent parametric overlap. These unique measurements were conducted using a
cutting-edge digital holographic imaging technique, which provides three-dimensional
particle locations. Spatial accuracy of the particle positions is such that the RDF can
be calculated reliably up to r/η ∼ 1, where η = (ν3/ε)1/4 is the Kolmogorov length scale,
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Figure 1. Schematic of the turbulence box and holographic imaging set-up.

ν is the fluid kinematic viscosity and ε is the turbulent energy dissipation rate. These
measurements suffer from none of the effects described above owing to projection of
the RDF to lower dimensions. The particle size distribution is moderately broad and,
because of resolution limitations, the holographic imaging system may not be able
to capture the smaller particles. We input an equivalent distribution of particles into
the DNS that closely matches the distribution in the experiment, and then apply a
high-pass particle size threshold filter to the DNS results to mimic the filtering done
by the digital camera.

2. Experimental method
2.1. Flow and particle characteristics

The turbulent flow facility consists of an air chamber (‘turbulence box’) that is 38 cm
across, with fans in the eight corners of the box to produce the turbulent flow field
(see figure 1). The design of the box is similar to that used by Birouk et al. (1996).
The flow field in the central region of the the box has been shown by de Jong
et al. (2007) to be homogeneous and isotropic. Flow velocity statistics were obtained
by particle image velocimetry (PIV), with use of a Spectra-Physics PIV-400 dual
injection-seeded Nd:YAG laser (400 mJ pulse−1 at 532 nm, 8 ns pulse width) and a
sharpVISION 1300 CCD camera (10 bit, 1280 × 1024, 6.7 μm pixel array). The set-
up is able to reach a Reynolds number based on the Taylor microscale, Rλ, up to
187. However, because of concerns with achieving stationary statistics for the RDF
that will be discussed later, we have limited the maximum Reynolds number in the
experiments to Rλ ∼ 150. A summary of all of the relevant flow parameters for each
of the conditions investigated is given in table 1. The turbulent energy dissipation
rate ε reported in table 1 is calculated via the longitudinal second-order structure
function DLL(r), assuming inertial subrange scaling DLL(r) = C2(εr)

2/3 with a universal
constant C2 = 2.1 (Sreenivasan 1995). Figure 2 shows two independent measurements
of the second-order longitudinal structure function in compensated coordinates, such
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Units I II III

Experiment
Horizontal r.m.s velocity urms m s−1 0.346 ± 0.005 0.529 ± 0.008 0.672 ± 0.010
Vertical r.m.s velocity vrms m s−1 0.378 ± 0.005 0.582 ± 0.008 0.764 ± 0.011
Turbulent kinetic energy k m2 s−2 0.191 ± 0.004 0.449 ± 0.009 0.743 ± 0.016
Turbulent intensity u′ =

√
2/3k ms−1 0.357 ± 0.004 0.547 ± 0.006 0.704 ± 0.007

Turbulent energy dissipation rate ε m2 s−3 1.33 ± 0.21 4.90 ± 0.76 11.0 ± 1.73
Large eddy length scale L= k3/2/ε cm 6.29 ± 0.99 6.13 ± 0.96 5.82 ± 0.94
Large eddy time scale Te = L/u′ s 0.18 ± 0.028 0.11 ± 0.018 0.08 ± 0.013
Kolmogorov length scale η μm 226 ± 8.7 163 ± 6.3 133 ± 5.2
Kolmogorov time scale τη 10−3s 3.37 ± 0.27 1.76 ± 0.14 1.17 ± 0.09
Kolmogorov velocity scale uη ms−1 0.067 ± 0.003 0.093 ± 0.004 0.114 ± 0.005
Taylor micro-scale λ mm 4.66 ± 0.37 3.72 ± 0.29 3.19 ± 0.26
Reynolds number Rλ — 110 ± 9 135 ± 12 149 ± 13

Direct numerical simulations
Reynolds number Rλ — 108 134 147

Table 1. Flow parameters. Roman numerals indicate the different comparison conditions. We
show 95% confidence intervals that were estimated using the method described by Benedict &
Gould (1996) for the turbulence velocity statistics and Kline & McClintock (1953) for ε and
related quantities. Further details can be found in de Jong et al. (2007).
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Figure 2. Compensated second-order longitudinal structure functions (DLL) for the different
flow conditions. Symbols indicate independent realizations of the experiment.

that the ordinate value of the plateau region is ε. Refer to de Jong et al. (2007) for a
complete discussion of the measurement of the dissipation rate in our system.

DNS has shown that the degree of particle clustering is a strong function of the
particle Stokes number, defined here as St ≡ τp/τη, where τp ≡ βd2/18ν is the viscous
response time of the particle, τη ≡

√
ν/ε is the Kolmogorov time scale, β ≡ ρp/ρ is

the ratio of the particle density to the fluid density and d is the particle diameter.
Maximum clustering occurs for St ∼ 1. In an attempt to maximize the signal-to-noise
ratio in the experiment, we selected silver-coated hollow-glass spheres (β = 1375). The
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Figure 3. Particle size and particle Stokes PDFs for I and III. The particle size PDF was
measured by a third party using the electrozone particle sensing technique. A sample filtering
operation is shown for dc = 5 μm.

probability density function (PDF) of the particle size is shown in figure 3, both in
terms of diameter and the corresponding Stokes number at the lowest and highest
turbulence conditions in the study. Clearly, there is a broad range of particle Stokes
numbers, peaked between 0.1 and 0.2 depending upon the fan speed. This range
of Stokes numbers allows us to observe a good degree of particle clustering in the
experiment.

Experiments were initiated by setting the fans to a particular condition and allowing
the system to equilibrate. Particles were then injected into the top of the box, while the
digital camera simultaneously recorded holograms at ∼10 Hz. Gravitational settling,
as well as adhesion to box and fan surfaces, led to a decrease in the particle
concentration over time; consequently, particles had to be re-injected periodically to
sustain the concentration in the experimental volume within the desired range. The
negligible particle mass loadings in the experiment (O(10−4)) led us to believe that the
measured turbulence conditions were not substantially altered by particle injection,
although we could not simultaneously measure particle and velocity field statistics.

2.2. Holographic imaging

Digital holographic imaging, as in digital holographic PIV, employs a digital image
sensor to record the hologram, and uses numerical algorithms to reconstruct the
three-dimensional image volume (Xu et al. 2001; Owen et al. 2002; Pan & Meng
2003). It eliminates the notorious wet film processing of individual holograms and
enables continuous-in-time three-dimensional volumetric particle/flow measurements.
However, the low resolution of digital image sensors has restricted standard digital
particle holography to the in-line configuration (forward scattering). The narrow
angular spread of the in-line hologram recording, along with the finite digital sensor
pixel size causes severe speckle noise and a large depth-of-focus in the reconstructed
particle image. Consequently, the current generation of digital holographic imaging
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systems is limited to measurements at low particle densities (<1 mm−3) and small
flow facilities (<1 cm in each dimension).

The large size of our particle-laden turbulence chamber and the dense particle
distribution prohibit the use of standard digital in-line holography owing to its
excessive speckle noise. We therefore employ a hybrid digital holographic system
described in Meng, Pan & Pu (2004) and Cao et al. (2007). In this approach (figure 1),
the pulsed laser beam is split into a reference beam and an object illumination beam,
allowing a selected volume of particles in the turbulence box to be imaged at 90◦. The
selected illumination and arrangement of 90◦ scattering avoids the excessive speckle
noise from particles along the illumination path that are outside the volume of interest,
as would occur in standard digital in-line holography. The 90◦ scattered light is then
recorded via interference with the reference beam, which is folded into the hologram’s
optical axis. The recombination of the object and reference beams on-axis minimizes
the spatial frequency of the holographic fringes, such that these can be resolved by
the digital sensor. Such a design has the advantages of speckle-noise suppression
provided by off-axis (side) scattering and the lower resolution requirement provided
by on-axis (in-line) recording. Hence, the hybrid system enables three-dimensional
measurements in large flow facilities with significant particle concentrations. At this
point, we are unable to quantify systematic errors that may result from speckle noise,
but we believe them to be small.

One challenge of the hybrid system is that side scattering does not allow the use of
the complex amplitude method described in Pan & Meng (2003), designed to reduce
the depth-of-focus and improve spatial resolution. Fortunately, images formed by 90◦

scattering inherently have up to an order of magnitude higher intensity-based axial
definition than those formed by forward scattering; thus we employ an intensity-based
method to extract particle centroids from the reconstructed hologram, as described
in Pan (2003). However, as intensity-based methods rely on thresholding of the
reconstructed intensity field, smaller particles in a polydisperse distribution that have
lower scattering intensity inevitably are lost during the thresholding, resulting in a
particle size ‘high-pass’ filtering effect. Therefore, to achieve an accurate comparison
between our experiments with a polydisperse distribution and DNS, this filtering
effect must be taken into account.

Even with the hybrid scheme set for a relatively modest measurement volume of
approximately 1 cm3, the extracted particle density (∼2 mm−3) and number of particles
extracted per hologram (∼400) are both well below DNS values. To obtain acceptable
statistical convergence, we must average over multiple holograms, weighted by the
number of particles in each hologram.

3. Direct numerical simulations
The simulation domain consists of a three-dimensional cube of length 2π along

each side (arbitrary units). Periodic boundary conditions make the flow-field amenable
to Fourier spectral methods.

3.1. Governing equations

The fluid is governed by the continuity and incompressible Navier–Stokes equations

∇ · u = 0 ,
∂u
∂t

+ u · ∇u = − 1

ρ
∇p + ν∇2u + F, (3.1)
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where u(x, t) is the fluid velocity p(x, t) is pressure and F(x, t) is a time-dependent
deterministic forcing function that injects energy into the first two wavenumbers to
maintain statistically stationary isotropic turbulence (Witkowska, Brasseur & Juvé
1997). The influence of the particle volume on the continuity equation has been
neglected owing to the low particle volume loadings, Φv ∼ O(10−7). Note the absence
of a particle source term in the momentum equation. Reverse coupling is neglected,
a simplification which is justified owing to the neglibile mass loadings, Φm ∼ O(10−4)
(Boivin, Simonin & Squires 1998; Sundaram & Collins 1999). Particles in the flow
field are advanced according to the evolution equation derived by Maxey & Riley
(1983), which for large particle-to-fluid density ratios (i.e. β 	 1) simplifies to

dx(i)
p

dt
= v(i)

p ,
dv(i)

p

dt
=

u
[
x(i)

p

]
− v(i)

p

τ
(i)
p

, (3.2)

where v(i)
p is the velocity of the ith particle and u[x(i)

p ] is the fluid velocity interpolated

at the particle position x(i)
p . Additionally, we neglect gravitational settling. Wang &

Maxey (1993) found no appreciable effect of gravitational settling on the particle
concentration statistics for vg/uη < 3, where vg = τpg is the gravitational settling
velocity and uη = (νε)1/4 is the Kolmogorov velocity scale. In our simulations,
vg/uη � 1 for all of the particles at all flow conditions. Moreover, 71%, 82% and
89% of the particles after filtering (see § 3.3) have a settling velocity that is less than
10% of the Kolmogorov velocity scale in flow conditions I, II and III, respectively.
Interparticle collisions are also neglected (Reade & Collins 2000a).

3.2. Numerical details

Equations (3.1) are solved on a 2563 grid using a pseudospectral method. Details of
the numerical method can be found in Brucker et al. (2007).

We initialize 600 128 particles with a Stokes (and response time) PDF that matches
the experimental PDF shown in figure 3. Heun’s method (two-stage second-order
Runge–Kutta) is used to numerically integrate (3.2) along each independent particle
trajectory with use of an integrating factor. Fluid velocities at particle centres
are obtained via an eighth-order Lagrangian interpolation scheme similar to that
described in Berrut & Trefethen (2004). Particle response times for the smallest
particles are much smaller than the smallest fluid mechanical time scale, τη. Reducing
the overall time step to update these particles accurately would be extremely wasteful
of the CPU. Instead, the particle updates are ‘sub-cycled,’ wherein multiple particle
time steps are taken per fluid time step, resulting in a more accurate description of
the particle motions with only a modest increase in CPU.

3.3. Filtering

The finite resolution of the camera used to record the digital holograms restricts
the range of particle sizes that can be accurately recorded. The camera pixel size is
approximately 6.5 μm, hence we expect the camera will filter particles of that size or
smaller. Unfortunately, we have no a priori means of knowing which particles will be
filtered. To mimic the finite resolution of the camera, we apply a high-pass particle
size threshold filter with a variable diameter cutoff, dc. Figure 3 shows the high-pass
filter for a cutoff diameter, dc =5 μm. Particles in the hatched region are used to
compute the RDF. By varying the filter cutoff diameter over a reasonable range,
0 μm � dc � 10 μm, we observe the sensitivity of the RDF (see the inset in figure 5).
Our approach is to fit dc at one fan speed, and test the agreement between DNS and
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experiments at the other fan speeds, under the assumption that dc is not sensitive to
the conditions of the experiment.

4. Results and discussion
At the conditions summarized in table 1, the RDF was computed by binning the

particle pairs based on their separation distance, according to (1.1). The experimental
volume is not periodic, thus making the analysis of particles near the boundaries
ambiguous. To eliminate any bias from these particles, we treated the volume as
periodic and paired those particles with reflected particles from elsewhere in the
volume. Numerical experiments with DNS data (taken over non-periodic subdomains)
showed the error associated with this assumption to be small.

One unanticipated feature we observed is that following injection, the RDF evolves
towards a stationary state. This can be seen in figure 4, which shows the RDF
averaged over seven ‘phases’ following an injection. As shown in the inset of figure 4,
the particle concentration is decreasing in time owing to settling and losses to the
fan and wall surfaces. When the particle number dropped below the detectable limit,
we injected additional particles, causing the transient process to restart. Each ‘phase’
corresponds roughly to 0.5 s following the peak in the particle concentration of the
injection cycle. The steady increase in the RDF over phases 1–5 is at least qualitatively
similar to the build-up in the RDF observed in DNS at short times, starting from
an initially random particle field. However, precise timings of the injection events
were not made in this study, as we had not anticipated the transient behaviour that
was observed. Thus, the focus of this study will be on the stationary behaviour we
measured in the final two phases.

DNS at flow conditions that match the Rλ from each of the three experimental
conditions were performed. Particles with an identical Stokes number distribution



Inertial particle clustering in isotropic turbulence 253

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

2 4 6 8 10

3

Incereasing dc

2

1

2 4 6 8 10

g(
r/

η
)

g(
r/

η
)

r/η

r/η

Figure 5. RDFs from experiment and DNS (dc = 8 μm). Error bars give the 95% confidence
interval obtained via bootstrap: —— – ——, I (DNS); ——, II (DNS); – – –, III (DNS); �, I
(Exp.); �, II (Exp.) ; �, III (Exp.). Inset shows DNS RDFs (III) for dc = 0, 1, . . . , 10 μm. For
dc = 8 μm: 〈St〉 = 0.21 (I); 〈St〉 = 0.40 (II); 〈St〉 = 0.60 (III).

for each experiment were introduced randomly, and the simulations were run for
10 τeddy , where τeddy ≡ L11/u

′ is the large eddy turnover time, L11 is the longitudinal
integral length scale and u′ is the turbulence intensity. The DNS was continued for an
additional 23 τeddy and the RDF was computed every 0.2 τeddy and averaged over the
stationary period. The resulting statistical convergence of the RDF was substantially
higher than in the experiments.

A complication in comparing the RDF from the experiments and DNS is that
even for identically distributed particles, the RDF is sensitive to the size of the
experimental volume. This can be understood by recognizing that the RDF (see (1.1))
is normalized by the average pair density in the experimental volume V . Because of
clustering, the average pair density for a small sample volume (such as that found in
our experiments) will be larger than the corresponding value in the thermodynamic
limit V → ∞. To compensate, we renormalized the DNS RDF such that the average
pair density used was based on the equivalent sample volume as in the experiment,
measured in Kolmogorov units.

The RDFs for conditions I, II and III of table 1 are displayed in figure 5. As
discussed in §3.3, the limited resolution of the camera filters the smaller particles.
We compensate for the camera’s filtering by introducing a high-pass particle-size
threshold filter with a cutoff dc. As shown in the inset of figure 5, the RDF increases
with increasing dc. Because the particles removed by the filtering process have smaller
Stokes numbers, their presence lowers the RDF, or conversely their removal increases
it. The high-pass filter of dc = 8 μm applied to DNS data shows the best agreement with
the experiments at all three conditions. Note that we neglect the first experimental
point that is low owing to spatial measurement errors (particularly in the axial
direction) and statistical sampling errors. Aside from that point, the remainder of the
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D2 c1 c̃1

Exp. DNS Exp. DNS Exp. DNS

Case I 2.72 2.79 0.25 0.20 0.28 0.21
Case II 2.56 2.67 0.34 0.32 0.44 0.33
Case III 2.51 2.59 0.40 0.39 0.49 0.41

Table 2. Correlation dimension, D2, and the power-law exponent, c1, from direct numerical
simulations (DNS) and experiments (Exp.) at the three conditions. Also shown is the expression
c̃1 = d − D2 for d = 3.

experimental points are generally in quantitative agreement with the DNS. There are
some discrepancies at r/η ∼ 5, mainly due to a bump in the experimental points that
we do not observe in the DNS, and for which we have no satisfactory explanation. A
second discrepancy occurs at the lowest fan speed for r/η � 2. We could match these
points by setting dc =9; however, we cannot justify this change.

An alternative measure of inertial particle clustering is the correlation dimension,
D2 (Grassberger & Procaccia 1983). Bec et al. (2007) used this measure to quantify
particle clustering. Table 2 shows the good agreement between D2 obtained by non-
linear regression of the experimental measurements and D2 from the DNS with filter
dc = 8 μm. Chun et al. (2005) predicted the RDF for monodisperse particles should
behave as a power law of the form g(r) ∼ (η/r)c1 . For a power-law RDF, the power c1

is related to the correlation dimension as follows: c1 = d−D2, where d =3 is the dimen-
sion of the space containing the particles. Table 2 shows a comparison of the values
of c1 obtained by regression of both data sets, and we see once again there is good
agreement between experiment and simulations. The expected relationship between c1

and D2 (c̃1 in table 2) is better satisfied by the DNS than by the experimental data. This
is mainly attributed to the lower statistical error in the DNS relative to the experiment.

The filtering operation we implemented in the DNS analysis is a crude approxi-
mation of the complex filtering performed by the camera. We anticipate the camera
will give rise to a convolution of the size distribution rather than a strict high-pass
filter. That is, the resolution of a particle of a given size will depend upon the
number and size of the neighbouring particles that surround it. We have explored this
more complex filtering process by generating synthetic digital holograms using DNS
particle positions. We ultimately selected the high-pass filter for its simplicity. We
could not justify introducing a more complex function at this time, particularly given
the other uncertainties in the experiment, and the difficulty of precisely matching the
experiment in the DNS. Our results support our contention that the high-pass filter
is able to capture the primary effect of the filtering by the CCD camera.

5. Conclusions
Three-dimensional measurements of the positions of a polydisperse distribution

of inertial particles in homogenous and isotropic box turbulence were performed
using digital holography. Radial distribution functions were calculated from
measurements at three flow conditions. For the first time, quantitative comparisons
of the experimentally obtained RDF were made with results from direct numerical
simulations performed on a 2563 grid with 600 128 particles. Near perfect parameter
overlap was achieved in terms of the particle Stokes number PDF and flow Reynolds
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number. A simple high-pass particle size threshold filter was introduced in the
numerical results to mimic the resolution limitations of the CCD camera. We find
very good agreement between experiment and DNS based on a filter cutoff dc =8 μm.
This value is reasonable, given the camera pixel size is 6.7 μm.

In future experiments, we plan to address the filtering problem by using a narrower
particle size distribution. In addition, work is underway to extend the analysis of
Pan & Meng (2003) to the hybrid scheme. This will allow us to distinguish particles
from noise more accurately, and will improve the accuracy of the measurement in
the axial direction (de Jong & Meng 2007). Finally, by implementing a more precise
injection scheme, we will be able to investigate the time dependence of the RDF and
compare its transient behaviour to the DNS.
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